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Abstract. We find empirically a characteristic sharp peak-flat trough pattern in a large set of commodity
prices. We argue that the sharp peak structure reflects an endogenous inter-market organization, and that
peaks may be seen as local “singularities” resulting from imitation and herding. These findings impose a
novel stringent constraint on the construction of models.

PACS. 01.75+m Science and society – 05.40.+j Fluctuation phenomena, random processes, and Brownian
motion – 05.70.Jk Critical point phenomena

1 Introduction

In the stock market, returns over long period of times are
often mainly due to rare large upward price variations that
occur over a tiny fraction of the total trading time: the US
equity index S&P500 for instance has gained an average
of 16% a year from 1983 to 1992 and 80% of this return
stems from forty days of trading, i.e. less than 1.6% of all
working days. This property is shared by other markets
and other assets. The prices of commodities that we will
investigate here is no exception.

The prices of most commodities are also characterized
by rare and sudden bursts of apparently outlying values.
A typical and spectacular example is provided by the evo-
lution of the price of gold and silver; in the half century
since 1950, these prices experienced one huge peak that
lasted for two decades and resulted in a multiplication of
the (deflated) price by a factor of the order of 10.

These two examples outline the importance of both
rare events and the effect of correlations in the determina-
tion of market price time series. The Gaussian paradigm of
independent normally distributed price increments [3,48]
has long been known to be incorrect with many attempts
to improve it. Econometric nonlinear autoregressive mod-
els with conditional heteroskedasticity (ARCH) [17] and
their generalizations [6] as well as jump-diffusion models
[29] capture only imperfectly the volatility (variance) cor-
relations and the fat tails of the probability density distri-
bution (pdf) of price variations. Alternatively, the fat tail
properties of the full pdf (corresponding to a one-point
statistics) has been described by a Lévy law [34] for cot-
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ton and other commodities and more recently by a trun-
cated Lévy flight [1,37] for equities or by a superposition
of Gaussian pdf’s with log-normally distributed variance
[21]. A recent decomposition of the volatility (standard
deviation) of return data across scales of several financial
time series has revealed the existence of a causal informa-
tion cascade from large scales to fine scales that expresses
itself in the volatilities [2].

In very liquid markets of equities and foreign exchanges
for instance, correlations of price variations are extremely
small, as any significant correlation would lead to an ar-
bitrage opportunity that is rapidly exploited and thus
washed out. Indeed, the fact that there are almost no cor-
relations between price variations in liquid markets can
be understood from the following simple calculation pre-
sented in [8] that we slightly extend. For the sake of illus-
tration, let us assume that the price variations δx over
the time interval δt are Gaussian correlated stationary
variables of zero average. Time is expressed as a multi-
ple of δt. The time series δx1, δx2, ..., δxt is denoted by
the column vector Xt. The correlation function is defined
by

〈δxnδxk〉 ≡ C(n, k), (1)

which is C = 〈XXT 〉 in matricial notation. If the correla-
tion functions are the only constraints, then it is straight-
forward to show, under the assumption of a maximum
entropy principle, that the knowledge of the correlation
functions is fully embedded in that of the following mul-
tivariable probability distribution for the variables δxn

P (Xt) = P0 exp

(
−

1

2
XT
t C
−1Xt

)
. (2)

where XT
t denotes the transpose of X, i.e. the uni-row

matrix whose nth row is δxn. C−1 is the inverse of the
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correlation matrix. Expression (2) can be rewritten ex-
plicitely as

P (X) = P0 exp

(
−

1

2

t∑
n,m+1

C−1(n,m)XnXm

)
. (3)

This expression shows that, conditioned to the past val-
ues of the variations δx0, ... δxt−1, the probability density
function of δxt is then given by

P (δxt) = P0 exp

(
−
C−1(t, t)

2

[
δxt −mt

]2)
, (4)

where P0 is a normalization factor. The average mt of δxt
conditioned to the past is

mt ≡

∑t−1
i=0 C

−1(i, t)δxi
C−1(t, t)

· (5)

It may be non-zero due to the presence of correlations.
A simple trading strategy consists in buying a unit stock
if mt > 0 (expected future price increase) and selling if
mt < 0 (expected future price decrease). The average
gain is then 〈|mt|〉 > 0. Let us consider the short range
limit where only C−1(t, t) and C−1(t, t − 1) are non-zero
and δt is then equal to the correlation time which is typ-
ically 5 minutes for liquid markets. The average return

over one correlation time is then
1

e

〈
|δx|

x

〉
≈ 3.7× 10−4

for

〈
|δx|

x

〉
≈ 10−3. Over a day, this gives an average gain

of 0.59% which accrues to 435% per year when return is
reinvested or 150% without reinvestment! Such small cor-
relations would lead to substantial profits if transaction
costs and other friction phenomena like slippage did not
exist1.

Counting the transaction costs of about c ≈ 0.1% and
since one must on average modify the position once in a
correlation time to achieve the above performance, this
leads to an effective average gain per transaction equal to

e−1

〈
|δx|

x

〉
− c which becomes negative in our numerical

application! Since the scaling law |δx| ≈

(
δt

T

)H
(with

H ≈ 0.6) [41], holds for time scales less than about a day,
a given level of transaction cost c allows correlations to
develop over a maximum time δt ≈ T (ec)

1
H (such that

e−1

〈
|δx|

x

〉
= c) without allowing arbitrage opportuni-

ties. The small level of transaction costs in efficient mod-
ern markets thus explains the low level of correlations of
price variations, completing the proof of the above asser-
tion.

The liquidity and efficiency (level of transaction costs,
slippage) of markets thus control the degree of correlation

1 Slippage refers to the fact that market orders are not always
executed at the order price due to limited liquidity and finite
human execution time.

that is compatible with the almost absence of arbitrage
opportunity. In other words, if one detects the possibility
to make money in a given market, the difficulty for enter-
ing the market and the costs limit the concrete realization
of this opportunity. Less liquid markets thus allow the ap-
pearance of stronger correlations that may take more in-
tricate forms. Here, we point out the existence of a more
subtle kind of price correlations in commodities, namely
the repeated existence of “sharp peak-flat trough” (SP-
FT) patterns, which we will study. Identifying patterns
in economic and financial prices has a long history and is
often refered to as “technical analysis”. Technical analysis
in finance can be broadly defined as the study of financial
markets, mainly using graphs of stock prices as a function
of time, in the goal of predicting future trends [44]. A lot of
efforts has been developed both by academic and trading
institutions and more recently by physicists (using some
of their statistical tools developed to deal with complex
times series) to analyse past data to get informations on
the future. We notice that the Dow Jones US index was
also characterized by a dominance of SP-FT from 1875 to
1935, but since 1950, the sharp peaks have left place to
smoother structures. This may be seen as the consequence
of a more efficient arbitrage progressively destroying those
patterns that would provide arbitrage opportunities.

Our motivation for this study is to provide a novel
characterization, with as few fitting parameters as possi-
ble, of economic time series which can be useful for sparse
data. This is a useful practical alternative (and/or com-
plement) to the determination of statistical distributions
and correlations of price changes. The problem is that in
order to obtain a probability distribution function with
reasonable precision, especially in the range of large price
changes, huge records of several thousand prices are re-
quired. In contrast, the shape of the peaks can be anal-
ysed on fairly small samples. In restricting ourselves to
the structure of the peaks, we aim at a more modest goal
which is to focus on a simple sub-structure of the whole
time series. The justification of this approach is simply
that all scientific endeavors (may) succeed when restrict-
ing their aim to simple enough problems which, when un-
derstood, can be extended and generalized towards the
more complex problems.

The main message of this paper is to point out that the
shape of major price peaks of commodities varies within
rather narrow limits. More specifically, the peaks are of
what we call the sharp peak type: if p denotes the price,
x = ln(p) turns its concavity upwards both before and af-
ter the turning point; mathematically this means that the
(suitably coarse-grained) second derivative of x(t) with re-
spect to time is positive close to the peak turning point.
When looking at a time series as a whole, this struc-
ture leads to the appearance of patterns that can be de-
scribed as SP-FT. As a consequence, the graph of ln p(t)
is not bottom-top symmetric: if the graph is rotated by
180◦ or inverted upside-down, the resulting figure will no
longer resemble the graph of a genuine commodity price
series. Qualitatively, this observation has been made some
time ago [12]. Our purpose here is to characterize it
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quantitatively and propose a theoretical basis for it. It is
important to realize that the existence of these SP-FT pat-
terns put strong constraints on any general theory com-
modity prices. Previous attempts [11] have already high-
lighted the difficulty of generating peaks having realistic
amplitude and frequency. If a general dynamical model for
the price behavior of commodities would be available, the
pattern of the peaks could be derived as a simple conse-
quence. Some models in this spirit have indeed been in-
vestigated by a number of authors [31,32,58], but such a
global approach turns out to be extremely difficult.

The shape constraint that we describe in this paper is
very demanding. Thus, in order for a model to qualify, not
only should it be compatible with the one-point (proba-
bility distribution) and two-points statistics (correlation
functions of the volatilities), it should also correctly ac-
count for the SP-FT patterns. It is indeed important to
constraint as much as possible the model construction as it
has been found in the past for instance that several models
could account equally well for the probability distribution
[1,2,21,37]. We do not claim that the SP-FT patterns al-
ways exist for all commodities but when there are present
they should be taken into account.

The second important message of the paper is that
the sharp peak structure may reflect an endogenous inter-
market organization, and that peaks may be seen as lo-
cal “singularities”. This conclusion extends and general-
izes the view that the largest possible peaks in the stock
market, preceeding the large crashes in the stock market,
can be modelled as special critical crises [18,19,22,27,28,
52,53,57]: the underlying hypothesis is that stock market
crashes may be caused by the slow buildup of powerful
subterranean forces that come together in one critical in-
stant. The use of the word “critical” is not purely literary
here: in mathematical terms, complex dynamical systems
such as the stock market can go through so-called “criti-
cal” points, defined as the explosion to infinity of a nor-
mally well-behaved quantity.

The paper is organized as follows. In Section 2, we
describe the SP-FT patterns for the case of pre-twentieth
century wheat markets. These markets have the advantage
of displaying a large number of price peaks. We are thus in
an ideal position for a systematic quantitative analysis. In
Section 3, we consider some twentieth century commodity
markets. The same pattern will be seen to hold in a num-
ber of important instances. In addition, we examine some
speculative price bubbles outside the sphere of commod-
ity markets in order to emphasize both the similarities and
the discrepancies. In Section 4, we discuss some require-
ments to be fulfilled by a future theory and outline such
a theory.

2 The sharp peak-flat trough pattern
in the case of wheat markets

2.1 Wheat markets

Before 1850, wheat was the key product in the economies
of Western Europe. Its production was the major task of

the agricultural sector which employed over two thirds of
the total manpower; its consumption was a crucial element
in the diet of the masses; and finally its trade represented
a large part of international trade. Because the price of
wheat was of crucial importance both for the economy
and for the public welfare, it was carefully recorded in
every state. Some of these records extend uninterrupted
from the 15th to the 20th century, and they contain many
huge peaks.

A superficial view would ascribe such peaks solely to
the occurrence of defavourable meteorological conditions.
In fact, meteorological hazards were only the triggering
factors in a more complex process. As will be seen subse-
quently, the average duration of the price peaks is of the
order of four years, a feature that clearly speaks against
the meteorological explanation since poor weather condi-
tions during four years in a row are rather unlikely. As a
matter of fact, the crucial role was played by speculation
and monopolistic practices as has been convincingly docu-
mented by many historians [5,40,42,56]. Indeed, hoarding
was common practice, not only by traders and retailers but
also by the consumers as is shown by the following excerpt
from Biollay [5]: “A survey conducted by the French State
Council described how people bought up the wheat market
at the first signs of a coming wave of high prices, and how
they stored large amounts of wheat for future use when
prices would have doubled or tripled”. In short, the mech-
anisms by which the pre-twentieth century wheat markets
operated were basically the same as those at work in mod-
ern commodity markets. One should notice an important
difference, namely no futures markets existed. But some
practices, such as buying the wheat in spring (i.e. several
months before the harvest), already announced the mech-
anism of the forward markets. Because for wheat markets,
there are so many long and reliable price records, we are
in an ideal position to carry out a statistical analysis of
price peaks. Such an analysis involves the following steps:

1. the selection of the peaks;
2. the definition of the parameters by which such peaks

can be described;
3. the statistical analysis of those parameters.

Let us turn to the discussion of these points.

2.2 Statistical procedure

2.2.1 Selecting the peaks

Everybody would certainly agree that a peak pattern can
be described as a price path which first goes up, reaches
a maximum, then goes down. However, real price trajec-
tories present in addition many short term price fluctu-
ations; this is illustrated in Figures 1a, b, c. Figure 1c
shows what the eye can identify as a large isolated peak.
However, its unambiguous definition and the determina-
tion of the starting point of the raising pattern depends
on the time scale at which the data is coarse-grained. If
we subject the price series to a moving average procedure,
local fluctuations below this time scale will be smoothed
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(a)

(b)

(c)

Fig. 1. (a) Monthly wheat prices in Toulouse (France) from
1500 to 1550, (b) from 1800 to 1850, (c) Weakly wheat prices
in Munich during the 1815-1819 peak.

out. The width of the moving average window thus de-
termines the desired time scale. In the present paper, we
deal exclusively with monthly prices. We found that us-
ing a 41-months window smooths out adequately the lo-
cal irregularities so as to get a quantitative definition that
parallels the intuitive and efficient pattern recognition ef-
ficiency of the eye. We thus could eliminate the small scale
structures without affecting the overall shape of the large
peaks. Varying the size of the window by about 20% does
not modify our results.

Let us summarize the procedure by which peaks have
been systematically selected:

1. We have performed a moving average with bino-
mial weighting coefficients and a window-width of 41
months. The resulting series will be denoted by pm(t).

Fig. 2. Peaks and troughs of amplitude over 100% for wheat
prices in Munich.

2. We then computed the first differences dm(t) of the
previous series. All successive times ti for which dm(ti)
is stricly positive were considered as belonging to the
same rising path; decreasing paths were handled simi-
larly.

3. We then computed the amplitude, h = pmax/pmin of
the peak from the original series p(t) and we discarded
the peaks for which h was less than some critical value
hc. In the following hc will be given the two values 1.5
and 2.0.

This procedure is summarized in Figure 2 which pro-
vides the outcome of the peak identification algorithm on
a specific time series. The peaks and troughs have been
selected with the threshold hc = 2 and are indicated by
heavy dots. In addition to peaks and troughs, one could
also consider isolated rising or falling paths; these have
been analysed in [46]. In the present paper, we restrict
ourselves to peaks and troughs.

2.2.2 Definition of the variables describing the shape
of the peaks and troughs

Two sets of variables will be considered in order to de-
scribe the shape of the peaks. The first set summarizes
the magnitude and symmetry of the peaks, the second set
of parameters defines their shape more precisely.

In the first set, we consider five parameters defined
as follows; we shall here state the definitions for the case
of peaks but they can be easily deduced for the case of
troughs.

1. The amplitude h = pmax/pmin that has already been
defined.

2. The total duration d of the peak.
3. The ratio rp between the two prices at the beginning

and at the end of the peak: rp = initial price/final
price.

4. The ratio rd between the duration of the rising path
and the duration of the falling path: rd = duration of
the path before the turning point/duration of the path
after the turning point.
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5. The ratio rs between the slopes of the rising path and
falling path. rs = slope of the left hand section of the
peak/slope of the right hand section.

The parameters rp, rd and rs quantify the degree of
(as)symmetry between the rising and falling parts of a
peak. The introduction of the parameter rs is more specif-
ically motivated by the well-known result that Gaussian
linear processes cannot rise to their maxima and fall away
at different rates [9].

All parameters should be invariant under rescaling, i.e.
when all prices are multiplied by a common factor. Other-
wise those parameters would be affected by the currency
in which prices are expressed. The above parameters ob-
viously satisfy this requirement. The Figures 1c, 3 and
4 show that even the logarithms of the prices exhibit a
marked concavity. The goal of the second set of param-
eters is to provide a measure of this concavity. For this
purpose, we propose the following representation:

p(t) = A exp

[
−sgn(τ)

∣∣∣∣ t− t0τ

∣∣∣∣α] , (6)

where t0 denotes the turning point of the peak.

– If α is equal to 1, one retrieves an exponential growth
up to the turning point followed by an exponential
decay. x = ln(p) is thus linear by part with a tent-like
structure.

– If α < 1 and τ > 0, the function describes a sharp
peak of the kind represented in Figure 1c.

– If α > 1 and τ < 0, the function describes a flat trough.

– If α > 1 and τ > 0, the function describes a “flat peak”
of a kind that will be seen to exist in the real estate
market.

– If α < 1 and τ < 0, the function describes a
sharp trough, a rare but not altogether inexisting phe-
nomenon.

These cases are summarized in Figure 3a. The
parametrization (6) is parsimonious and intuitive. The co-
efficient A is just a scaling factor that depends on the cur-
rency used for expressing the price. t0 is the date of the
peak/trough, |τ | its duration and α quantifies the abrupt-
ness of the peak/trough. Close to t0 (i.e. for |t− t0| � τ),
the expression (6) can be expanded in

p(t)/A = 1− sgn(τ)

∣∣∣∣ t− t0τ

∣∣∣∣α , (7)

showing a power law behavior.

2.3 Empirical results

Table 1a lists the series for which we performed a statis-
tical analysis.

(a)

(b)

Fig. 3. (a) Peak and trough patterns, (b) Least square fit of
the generalized exponential (3) to the price peak in Munich
(1815-1819).

2.3.1 Peaks and troughs

Table 1b summarizes the statistical findings for the first
set of parameters. The statistical results cannot rule out
the null hypothesis that the peaks are symmetric with re-
spect to a vertical line drawn through the turning point.
In other words, after a speculative bubble, the prices come
back on average approximately to their initial level. Fig-
ure 3b provides a typical fit (to the peak price series in
Munich from 1815 to 1820) using the parametrization (6).

Table 1c summarizes our results for the values of the
parameters α and |τ | that best fit the peaks and troughs
listed in Table 1c. We note the remarkably small dispersion
of the determined values of α around

αpeak = 0.63± 0.03. (8)

Only the Vienna market is somewhat out of range with a
larger α = 0.8 and thus milder peak structure.
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Table 1. (a) Wheat price series analysed in this paper.

Market Country Period Interval Source

[year]

1 Cologne Germany 1532-1796 265 Ebeling and Irsigler (1976)

2 Grabow Germany 1785-1870 86 Beiträge zur Statistik (1873)

3 Munich Germany 1790-1855 66 Seuffert (1857)

4 Paris France 1521-1698 178 Baulant and Meuvret (1960)

5 Toulouse France 1486-1913 428 Frêche (1967), Drame et al. (1991)

6 Vienna Austria 1692-1913 222 Pribram (1938)

Total 1248 years

Table 1. (b) Average values of amplitude, duration and symmetry parameters for peaks and troughs.

Amplitude > 50% Amplitude > 100%

Peaks Troughs Peaks Troughs

Amplitude h 2.5± 0.2 2.4± 0.2 3.2± 0.3 3.1± 0.3

Duration [month] d 40± 3 42± 4 44± 5 53± 9

Left price/right price rp 1.0± 0.06 1.1± 0.1 1.0± 0.1 1.1± 0.2

Left durat./right durat. rd 1.2± 0.2 1.7± 0.6 1.4± 0.3 1.3± 0.4

Left slope/right slope rs 1.5± 0.3 1.0± 0.1 1.0± 0.2 1.2± 0.4

Number of fluctuations 103 79 44 22

Average interval between 8.1 11.5 23.2 49.4

fluctuations [year]

Notes: By and large these data are consistent with peaks lasting about 4 years and
which are symmetrical with respect to a vertical line drawn through their summit.

Table 1. (c) Generalized exponential exp[−sgn(τ )|(t− t0)/τ |α] adjusted to peaks and troughs of amplitude larger than 50%.

Market Number α τ Goodness of

fluctuations [month] fit

1) Peaks

Cologne 13 0.64 27.3 10%

Grabow 5 0.60 23.8 15%

Munich 7 0.63 38.9 11%

Paris 26 0.67 16.9 14%

Toulouse 36 0.62 26.7 13%

Vienna 16 0.80 23.5 10%

Average 0.66 26.2

2) Troughs

Cologne 4 1.14 −17.0 12%

Grabow 5 1.17 −15.4 10%

Munich 7 1.30 −7.7 12%

Paris 16 1.23 −9.8 17%

Toulouse 31 1.05 −17.2 15%

Vienna 16 1.08 −20.0 11%

Average 1.16 −14.5

Notes: The goodness of fit is defined by the ratio: e =
∑
i

(ti − oi)
2/
∑
i

oi
2

where ti are the theoretical values and oi the observations.
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Table 1. (d) Estimates for the parameter α for individual price peaks of amplitude larger than 100% on the market at Toulouse.

Year 1498 1508 1516 1529 1539 1546 1563 1573 1580 1595

α 0.453 0.455 0.482 0.509 0.512 0.773 0.784 0.644 0.775 0.500

h 3.1 3.2 2.1 4.0 3.3 4.6 3.3 4.0 2.2 2.1

Year 1614 1631 1644 1694 1710 1713 1720 1812 1817

α 0.750 0.581 0.597 0.495 0.894 0.606 0.613 0.625 0.595

h 2.1 3.6 3.8 2.5 3.7 2.2 3.5 3.5 2.6

Notes: The values of α do not have any definite trend in the course of time. Neither is there
any correlation between α and the amplitude of the peak h.

It is also noteworthy that no detectable variation of α
or τ can be detected in the course of time. This becomes
even more apparent if we list the results for individual
peaks (Tab. 1d). Neither is there any correlation between
α and the amplitude of the peak h. In sum, the average
values of α and τ for peaks versus troughs are consistent
with a SP-FT pattern.

2.3.2 The turning point

In the parameterization (6), the turning point t0 is a sin-
gular point due to the absolute value (i.e. the expression
of p(t) given by (6) is not differentiable at t0). Is this sin-
gularity solely a result of this choice of parametrization or
does it correspond to some real economic features? We be-
lieve that the latter holds and that the singularity reflects
a genuine cooperative behavior of the market not unsimi-
lar to those studied in critical phenomena in Physics.

Indeed, during a major price peak, the spatial corre-
lation length of the markets, quantifying the correlations
accross markets in different geographical areas, tends to
become very large. In reference [47], it has been shown
that during the price boost of 1816-1819 the spatial cor-
relation length jumped to a level about 20 times above its
“normal” level. This could be interpreted in two different
ways. First one could think that it is the occurrence of an
exogenous perturbation that forced prices upward on all
markets, thus producing almost simultaneous price jumps
throughout the country. Alternatively one may interpret
the jump in the correlation length as reflecting a genuine
endogenous increase of the strength and range of the inter-
actions between different markets. To distinguish between
the two interpretations, the correlation length of meteo-
rological factors was calculated [46] and it was found that
there is no significant increase during or even before the
occurrence of the peaks. In further support to the second
interpretation of an endogenous cause, we note that it has
been emphasized by many historians [39] that wheat trade
expanded in periods of high prices both in volume and
in range. Locally, many self-appointed retailers emerged;
regionally, traders were combing the countryside in or-
der to buy every available bushel of wheat for the sup-
ply of the cities (even at the expense of the countryside
supply); internationally, the government often encouraged
(and even subsidized) the importation of additional quan-
tities of wheat from distant markets.

3 Twentieth century commodity markets

3.1 An overview

Whereas in the previous section, it was possible to carry
out a systematic analysis with a relatively large data set,
the situation is much less favorable for the twentieth cen-
tury. For most commodities, there have been only a few
major peaks during this century. What makes things even
worse is that during the first half of the century, the world
economy has been disrupted by three major perturbations:
World War I, the Great Depression and World War II. For
this reason, we restrict our attention to the second half of
the century. Our objective in this section is to show by
a few examples that the SP-FT pattern also applies to
some twentieth commodity markets. A more systematic
investigation will be left to a subsequent paper.

In order to give an overview of twentieth century com-
modity markets, we have listed in Table 2 some of their
main characteristics. We note that the number of peaks
in the interval considered is too small to give robust esti-
mates of α and τ and the results are thus less reliable that
for Table 1c. In order to minimize this difficulty, α and τ
have been computed only for the largest peaks with am-
plitudes larger than 4. It should be emphasized that such
data are taken from various sources scattered throughout
the literature; this is a field for which a comprehensive
handbook of empirical data would be very valuable.

There is a marked contrast between high- and low-
volatility commodities (recall that the volatility is the
economic term for the coefficient of variation, i.e. the
ratio of the standard deviation to the mean). The most
volatile commodity is sugar, whereas bananas are the least
volatile. Between those two products, there is a ratio of
3.4 in terms of coefficients of variation, and of 5.1 in terms
of the amplitude of the largest peak. In the following, we
examine two cases: sugar and the precious metals, gold
and silver.

3.2 Sugar

Figure 4a depicts the shape of the three major peaks that
occurred for sugar prices in the interval 1950-1988. We get
the following estimates for the parameters α and τ :

1962-1965: α = 0.97, τ = 11.3,
1972-1976: α = 0.63, τ = 7.3,
1978-1981: α = 1.03, τ = 9.5.
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Table 2. The response of commodity prices to exogenous pertubations.

Price elasticity Price elasticity Storage/transportation Commodity Coefficient Amplitude Duration α τ

of demand of supply cost of variation of the largest of the largest

peak peak

(short-run) (short-run) 1951-1975 1960-1988

[present] [year] month

−0.37 high 30 Bananas 0.18 1.8 0.8

−0.04 8−25 Sugar 0.61 7.5 4.3 0.88 9.4

−0.10 5.7 Wheat 3.5 5.0

1.7 Cocoa 0.29 3.6 7.0

−0.17 0.06 2.6 Coffee 0.25 4.5 3.4 0.88 42

−0.20 0.15 2.8 Tea 0.26 2.7 4.5 0.90 10

Copra 0.14 5.9 3.5

2.2 Cotton 0.22 2.5 2.4

Jute 0.21 3.1 3.8

−0.30 0.06 0.9 Copper 0.33 2.8 3.0

Lead 3.1 8.9

Tin 0.20 2.8 10.0

Zinc 4.3 5.4 0.72 82

very low Gold 8.0 5.4 0.36 174

low Silver 6.6 19.0 0.51 41

Notes: Storage and transportation are two closely related operations. Storage costs are per ton-year and include handing costs;
they are expressed in percentage of the commodity’s average price; since in the case of sugar the very notion of an average price
makes little sense, we have indicated a range. In the case of bananas, storage is in practice limited to the one (or one and a
half) month taken by their transport and end of ripening; hence the figure given is the relative cost of freight. Let us recall
that a high price elasticity of demand (e = (dD/dp)/(D/p)) means that the price is fairly independent of the production level,
for instance because the demand can be satisfied by shifting to substitutes. Similarly a high elasticity of supply means that
production can easily adapt to any demand level; for instance land has a low elasticity of supply. Generally speaking, elasticities
are fairly variable not only in the course of time but also from one country to another. Furthermore they cannot “explain” the
scale of the peaks since they are themselves derived from an analysis of the price series. Since the prices of silver and gold are
highly nonstationary it would be meaningless to compute their volatilities (the result would be strongly time-dependent). The
number of the peaks in the interval considered is too small to give “robust” estimates for α and τ ; in order to alleviate this
difficulty α and τ have been computed only for the largest peaks, i.e. for peaks with amplitude larger than 4. Sources: Price
elasticities: Huang (1993), Radetzki (1990), Schultz (1938); Storage/transportation costs: Hissenhoven (1923), Mc Nicol (1978),
Maillard (1991); Montly prices: Monthly commodity (1985, 1990), Commodity trade and price trends (1988).

Table 3. Parallel evolution of the prices of paintings and of stocks (1920-1935).

Year 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

Paintings 100 107 80 147 100 117 142 125 158 125

Dow Jones (industrials) 100 74 94 95 110 145 152 184 273 346

Year 1930 1931 1932 1933 1934 1935

Paintings 143 283 63 72 100 118

Dow Jones (industrials) 358 176 81 99 101 135

Notes: The price index for paintings has been contructed by Buelens and Ginsburgh; the stock prices
refer to the yearly highs of the Dow Jones index at the New-York Stock Exchange. Sources: Buelens
et al. (1993), Farrel (1972).
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(a)

(b)

Fig. 4. (a) Price peaks for sugar, (b) annual prices of silver in
New York from 1950 to 1990 and inflation rates.

Two of the values of α are close to 1, a situation which
was fairly rare for wheat markets in the previous century.
We also note that τ is a factor of two or three smaller than
before.

3.3 Gold and silver

The case of the silver and gold bubbles which culminated
in January 1980 is of special interest for at least three
reasons.

1. These peaks were of colossal dimensions both in
breadth and in height: the duration was of the order
of 20 years and the prices were multiplied by a fac-
tor of the order of 20; if the amplitude of the peak
shown in Figure 4b appears to be smaller, this is be-
cause it is based on annual average prices; in terms of
weekly prices, the summit of the peak is as high as
5000 cents/ounce.

2. Here, in contrast to many other cases, the phenomenon
which triggered speculation is fairly well-identified; it
was the fear of inflation which led many oil magnates

Fig. 5. Real estate price bubbles.

to invest in precious metals. This is quantitatively il-
lustrated in Figure 4b; qualitatively it is well-described
in a fascinating book by Fay [15].

3. Finally, among all commodities, silver and gold
have particularly low (relative) storage/transportation
costs. This therefore provides strong evidence against
any theory of speculative bubbles which would solely
rely on the impact of storage/transportation costs.

3.4 Price bubbles in other sectors

In this paragraph, let us attempt a generalization. Indeed,
it may be illuminating to look at speculative phenomena
for which “experimental” conditions are somewhat differ-
ent. This can help us to separate the crucial variables
from those which are specific to a given environment, a
prerequisite for a future theory of collective speculative
behaviour.

3.4.1 Real estate prices

We consider in Figure 5 the case of real estate prices, a
“product” characterized by a very small price elasticity of
supply especially in city centers, by long transaction times,
and by fairly low storage costs. As a result, the real estate
price bubbles turn out to follow a flat peak-flat trough
pattern. Indeed, the very small price elasticity of supply
is probably at the origin of a limited amplification of the
speculative bubble, therefore preventing an acceleration
of the price. There are counter examples, for instance in
the speculative bubble of Florida real estate market in the
twenties (preceeding by a year the Oct. 1929 stock market
crash), in which the elasticity of supply was large because
new lands were plentiful as previously considered useless
lands were made avalaible to buyers [20].

3.4.2 Bubbles in collector’s items

Price bubbles in collector’s items such as paintings, col-
lectible autos or rare stamps often parallel bubbles in the
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stock markets or in real estate markets; here we shall re-
strict ourselves to illustrating this assertion by a few ex-
amples.

– Table 3 shows the parallel evolution in the price of
paintings as computed by Buelens and Ginsburgh [10]
and in the price of stocks on the New-York Stock Ex-
change. The amplitude of both peaks is of the order
of 3 but the turning point in the price of paintings
occurred one year after the turning point for stocks.
Incidentally, it should be noted that the price boost of
the late 1920s did not simply reflect a general increase
in the supply of money; in fact, between 1920 and 1929
the total currency mass in the United-States increased
by only 4.7% [24].

– In the late 1980s, there has been a speculative bub-
ble in collectible autos. Let us just mention one exam-
ple: on the London market, the price of a Ferrari 275
GTB4 built between 1966 and 1968 leapt from around
$ 90′000 in 1987 to $ 1 million in 1989, a multiplication
by a factor of 11; by the end of 1991, it had fallen back
to $ 270′000 (Herald Tribune, 28 May 1995).

– In Hong Kong, the prices of rare Chinese stamps have
risen steadily since 1970; yet, the trend accelerated at a
dizzing pace in the early 1990s. Let us mention two ex-
amples: the Chinese 1897 One Dollar stamp has risen
from $ 1′570 in 1970 to $ 251′000 in 1995, a multipli-
cation by a factor 160; another stamp, the Year of the
Ram, had its price multiplied by a factor 430 between
1967 and 1995 (Herald Tribune 28 May 1995).

Note in these examples the unexpectedly large magni-
tude of the price jump.

These are rather fragmentary indications; unfortu-
nately the data are too sparse and do not allow for an
analysis of the shape of the bubbles. Our aim in men-
tioning them was to emphasize that the phenomenon of
speculative bubbles extends beyond the spheres of eco-
nomics and finance. We think that this observation may
be of interest in the perspective of constructing a general
theory of speculative behaviour.

3.4.3 Stock market crashes

Large stock market crashes are one of the most dramatic
examples of speculative bubbles culminating in peaks pre-
ceeded by an acceleration. It has been shown that the
largest stock market crashes in this century are outliers:
they occur much more frequently that would predict the
extrapolation of the historically determined distribution
based on the more numerous smaller price variations, even
when taking into account the significant deviation from
the Gaussian law [28]. The apparent disappearance of the
SP-FT structure in the present century for the “common”
peaks is paralleled by the very strong sharp peak pat-
tern accompanying the largest crashes. This result sug-
gests that large crashes result from amplification processes
that have not been washed out by the large liquidity of the

modern markets. These amplification processes (of spec-
ulative nature) could be similar to those at the origin of
the sharp peak structure on commodity prices observed in
the past centuries.

To pursue the analogy, we note that the exponents α
reported in Table 1c are remarkably close to those ob-
tained for the largest crashes of this century. When fitting
the price p(t) directly to a power law (7) (taking into ac-
count additional log-periodic corrections [52]), we find an
exponent α ≈ 0.3, that is half the average value reported
in Table 1c. In contrast, if we fit the logarithm of the price
to a power law (with again log-periodic corrections [53]),
we find an exponent α ≈ 0.6 for the Oct. 1929, the Oct.
1987, the May 1962 “slow crash” [27], the Hong-Kong Oct.
1997 crash [26] and the black monday of October 31, 1997
on the US equity market [59]. This value α ≈ 0.6 is re-
markably similar to those found for the sharp peaks of
commodities in the previous centuries. Due to increased
liquidity and efficiency in modern markets, the sharp peak
patterns have essentially disappeared except for the most
dramatic crashes for which the precursory patterns de-
velop over so long time scales (8 years [53]) that they have
not yet been adequately arbitraged away by the market.
The exponent α ≈ 0.6 might be the signature of the uni-
versality class of speculative/imitation behavior close to
the critical point (the turning point of the sharp peak).
However, for crashes, the symetric structure of the peaks
disappear.

4 Toward a theory

4.1 Linear stochastic multiplicative models

There is a large literature on the use of auto-regressive
models to model economic times series. As already pointed
out, the econometric nonlinear autoregressive models with
conditional heteroskedasticity (ARCH: autoregressive-
conditionally-heteroscedastic) [17] and their generaliza-
tions [6] keep the volatility (standard deviation of price
variations) as the main descriptor and allow for the fact
that the variance (or volatility) is itself a stochastic vari-
able. In the simplest version of ARCH(1), we have the fol-
lowing stochastic difference equation for the log-returns:

Rt+1 =
√
b+ aR2

t Zt, (9)

where Zt is a Gaussian random variable of zero mean
and unit variance. This process (9) describes a persistence
and thus clustering of volatilities R2

t . Indeed, the factor
(b + aR2

t )
1/2 ensures that the amplitude of the motion

Rt+1 is controlled by the past realization of the amplitude
R2
t . Now, calling Xt ≡ 〈R2

t 〉, where the average is carried
out over the realization of Zt, we see that (9) is equivalent
to

Xt+1 = aXt + b. (10)

We now allow the coefficient a and b to depend on time (in-
dependently from Zt) leading to an equation with stochas-
tic coefficient. This representation (10) provides useful re-
sults under the following conditions. Let us assume that
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b is always positive and it may or may not fluctuate. Its
presence ensures that X does not shrink to zero asymptot-
ically, even if the a’s are less than one. We then imagine
that the multiplicative factors a are drawn from some dis-
tribution such that on average the rate of growth is nega-
tive, thus preventing the explosion of the process, but with
intermittent realizations of a larger than one. Intuitively,
we can think that the realization of a reflects the mete-
orological factor, with a < 1 corresponding to favorable
conditions while a > 1 corresponds to bad weather with a
negative impact on wheat production. b can reflect a basic
contribution of the price, like the minimum wage and price
of production that may fluctuate but is strictly positive.
If the meteorological conditions are always favorable, the
realizations of a are always less than one and X converges
asymptotically to the fundamental price imposed by the
price of production. In contrast, in the presence of inter-
mittent adverse factors, a may become larger than one
one for several time steps in a row, leading to a transient
exponential growth.

This process (10) has a long history. See [51] for a re-
view with applications to population dynamics with exter-
nal sources, epidemics, finance and insurance applications
with relation to ARCH process, immigration and invest-
ment portfolios, congestions on the internet, the statisti-
cal physics of directed polymers in random media, auto-
catalytic chemical reactions, etc. At first sight, it seems
that the linear model (10) is so simple that it does not de-
serve a careful theoretical investigation. However it turns
out that this is not the case: see, for example, a rather
complicated mathematical analysis of the problem in [30].
It turns out that model (10) exhibits an unusual type of
intermittency with a power law probability distribution
of the variable Xt, for a large range of distributions for a
and b. The non-trivial properties of this simple model (10)
come from the competition between the multiplicative and
additive terms [54].

The formal solution of (10) for t ≥ 1 can be obtained
explicitly

Xt =

(N−1∏
l=0

a(l)

)
X0 +

N−1∑
l=0

b(l)
N−1∏
m=l+1

a(m), (11)

where, to deal with l = N −1, we define
∏N−1
m=N a(m) ≡ 1.

Because of the successive multiplicative operations on a
in the iteration of Xt, it is clear that the behavior is lo-
cally exponentially increasing or decreasing. The Figure 6a
shows a times series generated for a and b uniformly dis-
tributed in the intervals 0.48 ≤ a ≤ 1.48 and 0 ≤ b ≤ 1. In
this case 〈log a〉 = −0.06747 and 〈a〉 = 0.98. The Figure 6b
shows the same realization with a logarithmic scale in X,
clearly demonstrating the tent-like peak structure. Thus,
we conclude that stochastic multiplicative processes ac-
count for the intermittent production of sharp peaks, but
the upward concavity quantified by (6, 7) with α = 0.6
is not captured. In contrast to our empirical finding, this
class of model predicts an exponent α = 1. This result
is very instructive: stochastic multiplicative Kesten pro-
cesses account for a lot of observations, such as distribu-

(a)

(b)

Fig. 6. (a) Times series X(t) generated for by equation (10) for
a and b uniformly distributed in the intervals 0.48 ≤ a ≤ 1.48
and 0 ≤ b ≤ 1. In this case 〈log a〉 = −0.06747 and 〈a〉 = 0.98.

For these parameters, 〈Xt〉 = 〈b〉
1−〈a〉 = 25. Most of the time,

Xt is significantly less than its average, while rare intermittent
bursts propel it to very large values, (b) Same as Figure 6a but
with a logarithmic scale for X(t) showing a tent-like structure
of the peaks.

tions of increments with fat (power law) tails, self-affinity
of the time series, multifractality, volatility bursts, but
they are not capable of representing the acceleration pre-
ceeding large peaks that are characterized by an exponent
α significantly less than one.

4.2 Nonlinear models

We propose a nonlinear amplification phenomenon. To il-
lustrate the idea, consider as a toy model the following
equation describing the price increments δx

dδx

dt
= κ(δx)β , (12)

with β > 1, whose solution reads

δx(t) ∼ |t0 − t|
1/(β−1). (13)

Its time integral provides

x(t) ∼ |t0 − t|
α (14)
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with

α =
β − 2

β − 1
, (15)

which recovers (7). The observed value α ≈ 0.6 translates
into β ≈ 3.5. The intuitive interpretation of a value β > 1
is to represent multi-body interactions between several
players. The expression (12) is then similar to a “mean-
field” equation representing the average behavior of a rep-
resentative agent interacting with an effective number β
of other agents. This interaction, embodying the processes
of imitation and herding, is responsible for the observed
acceleration preceeding large peaks.

While suggestive, this model remains very schematic
and would need to be developed to account for the hetero-
geneity of the agents and the stochastic factors entering
the market. This is left for a future work.

5 Conclusion

We have identified empirically a characteristic sharp peak-
flat trough pattern in a large set of commodity prices.
These patterns provide a demonstration that those mar-
kets, that exhibit them, have not yet reached a fully ef-
ficient regime and these patterns constitute recognizable
signature of impending correlated price series. We have
shown that similar behaviors occur in a large variety of
markets, all the more so, the less liquid is the market.
Using simple models, we have shown that nonlinear am-
plification processes must be invoked to account for the
observed acceleration. Mechanistically, the nonlinear be-
havior embodies multi-body interactions leading to imita-
tion and herding.

One of the authors (B.M.R.) is grateful to D. Olivier, then
at the Caisse des Dépots et Consignations, for many fruitful
discussions.
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ulaires qui déterminent des violences dans les temps de
disette (Guillaumin. Paris, 1862).

41. U.A. Muller, M.M. Dacorogna, R.D. Davé, O.V. Pictet,
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